ESA’s Solar Orbiter to Slingshot Around Venus En-Route to the Sun

Solar Orbiter will be the first satellite to provide close-up views of the Sun's polar regions, providing images from high latitudes of parts of the Sun not visible from Earth By Joseph Macey / 14 Jan 2021

Discover Leading Defense Technology Solutions

Discover cutting-edge solutions from leading global suppliers
SUPPLIER SPOTLIGHT
Solar_Orbiter_ESA
Follow DA

The European Space Agency’s (ESA), Solar Orbiter, will shortly reach Venus to perform its first flyby of five around the shiniest planet in the Solar System. As part of the agency’s “Cosmic Vision” program, Solar Orbiter is designed to observe the Sun from close range, including from high-latitudes, to provide the first images of the Sun’s uncharted polar regions.

Because it will be operating so close to the Sun, this mission is a key to better understanding the heliosphere and its impact on Earth. The route to the Sun however is long and complicated, taking seven full years from its launch in February 2020 to complete the journey.

Solar Orbiter is taking advantage of the famous gravity assist, or slingshot effect – using the relative movement and gravity of a planet or other astronomical body to alter the path and speed of a spacecraft, typically to save propellant.

In addition to the five planned flybys, Solar Orbiter may perform three more if the mission is extended. In November 2021 it will again come close to the Earth, giving us a last chance to say goodbye before it gets up-close and personal with the Sun.

Launched from Cape Canaveral on February 10, 2020, Solar Orbiter is a joint international space mission between ESA and NASA, using a spacecraft developed by Airbus Defence and Space. A number of partners from both industry and academia have contributed to the spacecraft, with Thales Alenia Space playing a critical role.

Thales Alenia Space designed and built an innovative and highly efficient heat shield to protect the spacecraft and its instruments from the tremendous heat, while also enabling a direct view of the Sun. Its high-temp black painted shield is made of several protective layers of titanium and it is further isolated from the satellite by a combination of thermal blankets, an aluminum honeycomb core and titanium star brackets.

Solar_Orbitor_Heat-Shield_Thales_Alenia_Space
Thales Alenia Space designed and built the innovative and highly efficient heat shield.

Thales Alenia Space teamed up with OHB Italy as co-prime to supply Metis, an innovative chronograph that will take simultaneous pictures of the corona in both visible and ultraviolet wavelengths. This will reveal unprecedented structural and dynamic details of the solar atmosphere at a range from 1.7 to 9 solar radii from the Sun’s center, allowing scientists to investigate the link between the behavior of these regions and space weather in the inner Solar System.

These observations, based on the instruments’ unprecedented temporal coverage and spatial resolution, will enable Thales to study the structure and dynamic behavior of the corona and its features, finally separating their intrinsic characteristics from the effects of solar rotation.

Metis was proposed by an international scientific consortium led by Ester Antonucci from the INAF-Osservatorio Astrofisico di Torino (Turin Astrophysics Observatory), and is supported by the Italian space agency (ASI). The principal investigator is Marco Romoli, from the University of Florence.

Posted by Joseph Macey Connect & Contact

Latest Articles

GA-ASI & Marine Corps Advance MQ-9A Operational Capabilities

The U.S. Marine Corps has accumulated over 1,000 flight hours using the MQ-9A unmanned aircraft in collaboration with General Atomics Aeronautical Systems, Inc. (GA-ASI)

Apr 30, 2025
New ESTU Module to Boost Short-Term Stability of Optical Cesium Clocks

Adtran has launched the Enhanced Short-Term Unit (ESTU) for its OSA 3300 optical cesium clocks, delivering passive hydrogen maser-level stability and significantly enhancing precision timing for defense applications

Apr 30, 2025
Sky Power to Showcase ISR UAV Propulsion Technology at XPONENTIAL 2025

Sky Power International will present advanced UAV propulsion technologies at XPONENTIAL 2025, highlighting powerful engines, hybrid systems, and customized solutions for ISR and civilian applications

Apr 29, 2025
Full Ground Autonomy Integrated into Army SMET Vehicle for Uncrewed Breaching

Overland AI demonstrated its latest autonomous ground breaching capabilities at Project Convergence Capstone 5, integrating advanced software, hardware, and aerial payloads for Army experimentation

Apr 29, 2025
Application of Wheel Speed Sensors in INS

Micro-Magic delves into how wheel speed sensors are often used as auxiliary sensors in INS to improve navigation accuracy and suppress accumulated errors of inertial sensors

Apr 28, 2025
Product Spotlight: The Honeywell HG4930 IMU

Honeywell highlights the key features and reliability of the Honeywell HG4930 IMU, a trusted solution for navigation in GNSS-denied environments and challenging conditions

Apr 28, 2025

Featured Content

Sky Power to Showcase ISR UAV Propulsion Technology at XPONENTIAL 2025

Sky Power International will present advanced UAV propulsion technologies at XPONENTIAL 2025, highlighting powerful engines, hybrid systems, and customized solutions for ISR and civilian applications

Apr 29, 2025
Q&A with DEFCROS: Key Insights for the 2025 Expo

DEFCROS Founder Kristijan Ilovača discusses the expo’s rapid growth, international ambitions, and how the event aims to support defense and security innovators

Apr 24, 2025
Ophir® FoldIR Lens Enhances Long-Range Imaging for Defense & Security Operations

The new Ophir® FoldIR 25-275mm MWIR zoom lens delivers compact, long-range imaging with low-SWaP performance for drones and small gimbal platforms

Apr 17, 2025
Advancing Defense Capability Through Strategic Collaboration Defense Advancement works with major OEMs to foster collaboration and increase engagement with SMEs, to accelerate innovation and drive defense capabilities forward.