New Remote Controlled Weapon Station for Light Boats

General Robotics’ SHARK uses dual-axis electro-mechanical stabilization coupled with automatic tracking, video motion detection, and fire control for accurate weapon laying to deliver fast and precise firepower on small boats By DA Staff / 19 Oct 2022

Discover Leading Defense Technology Solutions

Discover cutting-edge solutions from leading global suppliers
SUPPLIER SPOTLIGHT
SHARK RCWS
Follow DA
SHARK-RCWS

General Robotics has introduced SHARK, a new version of its Remote Controlled Weapon Station (RCWS) that addresses the need for Special Operations Forces (SOF) to operate their weapons on small boats. 

These compact boats often move at high speed and agility. Yet, the constantly moving platform degrades fire accuracy with conventional weapon mounts, requiring operators to get dangerously close to the enemy to deliver the desired effects. Crews on larger boats often operate stabilized weapon stations to improve fire accuracy, but these systems can be to large and heavy for Rigid Hull Inflatable Boats (RHIBs). To meet this challenge, General Robotics developed SHARK for naval roles such as special operations to law enforcement interception, including interception, coastal security, counter-terror, and anti-piracy activities. 

Addressing the most demanding needs of Naval Special Warfare (NSW), SHARK was designed and tested with users and experts from the local and international NSW community. SHARK fits on small manned and unmanned naval vessels, NSW boats, and raiding crafts to deliver versatile and accurate firepower. 

“We designed SHARK to meet the specific requirements of naval commandos and SEALS,” Shahar Gal, General Robotics’ CEO, said. “We developed the SHARK prototype as a robust yet lightweight system offering seamless remote operation by a single operator with some special adaptations for naval use and NSW concepts of operation,” Gal said, adding that the prototype was further refined based on feedback from customers and partners following extensive field trials, further maturing SHARK for fielding. 

SHARK is based on General Robotics’ combat-proven Pitbull RCWS. Small and light, with a netweight of 85 kg (without weapon and ammunition), SHARK is built as a rugged, robust, seaworthy system that is versatile enough to operate remotely on a cluttered deck. According to General Robotics, the SHARK system can score direct hits at a sea state up to three, where the platform and targets constantly move. 

SHARK uses dual-axis electro-mechanical stabilization coupled with automatic tracking, video motion detection, and fire control for accurate weapon laying to deliver fast and precise firepower. This feature improves its capability to compensate for motions induced by the sea waves, platform, and target movements to engage moving targets. 

When the operator presses the trigger, the AI-driven fire control runs a target prediction algorithm to align the projectile’s path and the target’s expected location and points the weapon in that direction. Only then is a burst fired. According to the company, this technique has demonstrated hit accuracy of about 70%. This capability enables SHARK to be used as a naval Counter-UAS weapon, with the SHARK being mounted with an optional Anti-Drone Jammer used as a ‘soft kill’ Counter-UAS. 

Shark-RCU

Weapon control is done locally or remotely through a touch screen tablet encased in a jacket providing the intuitive operating and safety buttons for the ‘Point & Shoot’ control. SHARK also features a rear camera that provides the operator with a point of view to assess the weapon status and overcome malfunctions associated with the ammunition, weapon, or mount. 

SHARK is built for platform-independent operation; it maintains an autonomous situational awareness that includes built-in Anti-Collision functions and multiple Fire Inhibiting Zones (FIZ) and is integrated with other systems onboard. Optional integration with onboard radar enables SHARK to detect and alert hostile fires aimed at the unmanned platform and take responding measures accordingly. 

The system’s Size, Weight, and Power (SWaP) enables the crew to maximize the effect of small caliber weapons such as the 40mm automatic grenade launchers, 0.5″ heavy machine guns, and 7.62mm light machine guns. 

“At the bottom line, the reduced weight and size derive significant benefits,” said Gal, “It means SHARK can be mounted on smaller boats and handle the recoil loads with less weight and energy. As a result, SHARK consumes less power and delivers higher accelerations, resulting in better accuracy and agility. It can be used as a stand-alone system with its sensors or integrated with other sensors onboard. In this way, we offer tailor-made combat solutions to meet the unique requirements of our customers.” 

Posted by DA Staff Connect & Contact

Latest Articles

Portable Sensor Technology to Aid First Responders During Wildfire Emergencies

AFWERX has awarded Picogrid and MIT’s Mission Innovation X an STTR Phase II contract to enhance military wildfire response with portable sensor technology for real-time situational awareness

Mar 21, 2025
Seabed Crawlers to Enhance Mine Countermeasures in the E=MCM Program

Royal IHC and Elwave are enhancing European naval mine countermeasures with an advanced seabed crawler, biomimicry-based sensors, and autonomous toolboxes under the E=MCM program

Mar 21, 2025
G3 Systems Completes Stage 1 of British High Commission Refurbishment in Mozambique

G3 Systems has completed the initial phase of its third overseas refurbishment project for the UK’s FCDO, enhancing the British High Commission in Maputo, Mozambique

Mar 21, 2025
Overwatch & Milrem Robotics Partner to Advance Unmanned Defense Systems

Overwatch and Milrem Robotics have partnered to develop advanced interoperable unmanned defense systems, integrating UAV and UGV technologies to enhance mission effectiveness in modern military operations

Mar 21, 2025
Aitech Unveils Rugged SBC for Advanced Space Computing

Aitech introduces SP1, a space-rated 3U OpenVPX Single Board Computer (SBC) engineered for high-performance computing, enabling advanced autonomy, debris avoidance, and flexible payload integration in next-gen space missions

Mar 20, 2025
AUKUS to Receive Submarine Industrial Base Pilot Program

Honeywell will deliver the AUKUS Submarine Industrial Base pilot program to support the nuclear-powered Virginia–Class Submarine production, sustainment, and operational readiness

Mar 20, 2025

Featured Content

New SOSA-Aligned 3U VPX Video Graphics Cards Unveiled

EIZO’s new Condor GR5SL 3U VPX Series features NVIDIA RTX PRO™ 5000/4000 Blackwell GPUs with GDDR7 Memory and support for fifth-gen Tensor Cores and fourth-gen RT cores

Mar 19, 2025
Honeywell’s F-35 PTMS Surpasses One Million Flight Hours

Honeywell’s Power and Thermal Management System (PTMS) has surpassed one million flight hours, proving its critical role in the F-35’s performance, safety, and global sustainment

Mar 17, 2025
uAvionix Expands Casia G Capabilities for Continuous BVLOS Operations

uAvionix’s Casia G Release 4.0 introduces nighttime aircraft detection, enabling continuous BVLOS UAS operations with FAA approval and enhanced airspace awareness for law enforcement and commercial use

Mar 11, 2025