Teams Selected to Develop Technology to Capture Potable Water from Air Under DARPA’s AWE Program

The Atmospheric Water Extraction program aims to provide fresh water for a range of military, stabilization and humanitarian needs, through the development of small, lightweight, low-powered systems By Joseph Macey / 05 Jan 2021

Discover Leading Defense Technology Solutions

Discover cutting-edge solutions from leading global suppliers
SUPPLIER SPOTLIGHT
AWE_Atmospheric_Water_Extraction
Follow DA

DARPA recently awarded five contracts and selected one Government partner to develop technology to capture potable water from the air in quantities sufficient to meet critical DoD needs, even in extremely dry climates.

GE Research, Physical Sciences Inc., Honeywell International Inc., Massachusetts Institute of Technology, University of Texas at Austin, and U.S. Naval Research Laboratory were chosen to develop next-generation, scalable sorbent materials and prototypes under DARPA’s Atmospheric Water Extraction (AWE) program.

The goal of the AWE program is to provide fresh water for a range of military, stabilization, and humanitarian needs through the development of small, lightweight, low-powered, distributable systems that extract moisture from the atmosphere.

DARPA is open to various approaches, with an emphasis on advanced sorbents that can rapidly extract water from ambient air and release it quickly with minimal energy inputs. These sorbent materials offer potential solutions to the AWE challenge, provided they can be produced at the necessary scale and remain stable over thousands of extraction cycles.

In addition to developing new sorbents, AWE researchers will need to engineer systems to optimize their suitability for highly mobile forces by substantially reducing the size, weight, and power requirements compared to existing technologies.

“Access to clean water is of critical importance to the warfighter, and current water distribution operations incur numerous financial, maintenance, and logistical challenges,” noted Dr. Seth Cohen, AWE program manager. “The selected AWE program performers are being asked to leverage advanced modeling, innovative engineering, and additive manufacturing methods to support the program, which in turn will help maintain combat readiness, reduce casualties and cost due to water transportation, and enhance humanitarian and disaster relief efforts.”

AWE will address water needs in two tracks: expeditionary and stabilization. The expeditionary unit will seek to provide sufficient drinking water for an individual warfighter, with size, weight, and power (SWaP) parameters restricted by the need for portability and operation in austere environments. The stabilization device should provide the daily drinking needs for up to ~150 people (i.e., a company or humanitarian mission), with SWaP requirements tailored to resources available to missions of that scale.

The AWE program team is currently working with a wide range of government and industry stakeholders – including the U.S. Army Futures Command, Capability Development Integration Directorate (CDID), Product Manager for Petroleum and Water Systems (PdM PAWS), United States Special Operations Command, United States Air Force, Air Force Research Laboratory, Marine Corps Warfighting Lab, Marine Corps Engineer School, NEXLOG, and Imagine H2O – to serve as potential transition partners.

Posted by Joseph Macey Connect & Contact

Latest Articles

Partnership to Enhance Networking Capabilities for Defense Platforms

Amphenol Aerospace and BotBlox have partnered to distribute and integrate compact, rugged Ethernet hardware for defense platforms, enhancing networking capabilities and accelerating product development for uncrewed and mobile systems

May 01, 2025
USMC Receives Extended Range MQ-9A Reaper® from GA-ASI

The U.S. Marine Corps has received a technologically advanced MQ-9A Reaper® UAS from GA-ASI, featuring wing-borne fuel pods and reinforced landing gear for extended 30+ hour endurance

May 01, 2025
Extreme-Rugged Edge Computers & AI Systems to Feature at XPONENTIAL 2025

Neousys Technology set to exhibit its rugged embedded computers and edge AI solutions for extreme environments at XPONENTIAL 2025

May 01, 2025
The Advantages of AFT Cooling in Modern Defense Applications

Learn how Air Flow Through (AFT) cooling excels in defense applications, offering efficient heat dissipation, minimal maintenance, and rugged durability compared to other cooling methods. 4o mini

May 01, 2025
GA-ASI & Marine Corps Advance MQ-9A Operational Capabilities

The U.S. Marine Corps has accumulated over 1,000 flight hours using the MQ-9A unmanned aircraft in collaboration with General Atomics Aeronautical Systems, Inc. (GA-ASI)

Apr 30, 2025
New ESTU Module to Boost Short-Term Stability of Optical Cesium Clocks

Adtran has launched the Enhanced Short-Term Unit (ESTU) for its OSA 3300 optical cesium clocks, delivering passive hydrogen maser-level stability and significantly enhancing precision timing for defense applications

Apr 30, 2025

Featured Content

Sky Power to Showcase ISR UAV Propulsion Technology at XPONENTIAL 2025

Sky Power International will present advanced UAV propulsion technologies at XPONENTIAL 2025, highlighting powerful engines, hybrid systems, and customized solutions for ISR and civilian applications

Apr 29, 2025
Q&A with DEFCROS: Key Insights for the 2025 Expo

DEFCROS Founder Kristijan Ilovača discusses the expo’s rapid growth, international ambitions, and how the event aims to support defense and security innovators

Apr 24, 2025
Ophir® FoldIR Lens Enhances Long-Range Imaging for Defense & Security Operations

The new Ophir® FoldIR 25-275mm MWIR zoom lens delivers compact, long-range imaging with low-SWaP performance for drones and small gimbal platforms

Apr 17, 2025
Advancing Defense Capability Through Strategic Collaboration Defense Advancement works with major OEMs to foster collaboration and increase engagement with SMEs, to accelerate innovation and drive defense capabilities forward.