New Drone Capabilities Improve Situational Awareness & Threat Detection for Soldiers

Draper has demonstrated advances to its mobile military platform that include an autonomy framework, a sensor-driven mapping algorithm and sensors to detect the presence of CBRN elements By DA Staff / 12 Jul 2023

Tactical UAS

Discover cutting-edge solutions from 5 leading global suppliers
SUPPLIER SPOTLIGHT
CAARS
Follow DA

Draper has unveiled a new set of capabilities for small Unmanned Aerial Vehicles (sUAVs) that represents an advance in the platform from remotely operated vehicles to those capable of fully autonomous operations.

The company plans to equip sUAVs so that they can fly ahead of a military unit to scout a location and sense the presence of Chemical, Biological, Radiological and Nuclear (CBRN) elements. According to Draper, hazard detection using an sUAV can reduce the kinds of risks soldiers might encounter by scouting a location using handheld or vehicle-mounted sensors.

“Customers are asking, can an sUAV sniff out these CBRN hazards in place of humans? How smart does an sUAV need to be to search, map and locate these CBRN hazard without a remote operator? When an sUAV encounters a building or obstacle, can it fly in and around it safely? These are just some of the questions our team is exploring,” said Won Kim, a program manager at Draper.

Kim’s team set to work on these challenges in a program funded by the Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND) called CSIRP, which stands for CBRN Sensor Integration on Robotics Platform. 


The team investigated the customer needs through field observations, noting requirements such as sensor efficiency and resolution, flight speed, height, duration, autonomous operation, sensor-driven mapping, networked command and enhanced situational awareness through shared interactive digital maps.

Draper recognizes that soldiers operating in urban environments, for instance, need an sUAV that can navigate in and around buildings and obstacles, such as trees or vehicles, even when GPS signals are degraded or completely unavailable. They also need sUAVs to remotely search, detect, map and locate dangerous CBRN hazards. Soldiers dispersed across an area also want a way to share information that is secure, networked and mapped to the environment.

The new capabilities Draper developed for CSIRP take advantage of multiple environmental inputs, along with a sensor fusion algorithm that can synthesize data from instruments including GPS, LiDAR, inertial measurement units, magnetometers and cameras. All that fused information is designed to achieve robust and autonomous operation through the use of new algorithms developed for CSIRP that make the sUAV capable of obstacle detection and avoidance.

Under CSIRP, Draper integrated the sUAV with a mobile computing app, running on a handheld device, called the Tactical Assault Kit (TAK), which gives soldiers a map-based common operating picture on a shared network and provides enhanced situational awareness for command and control. Draper has developed software for every version TAK and the CBRN sensor plugin since it was first developed by the Department of Defense.

In a series of field tests, Draper engineers set the sUAV on a path of several miles, over and around obstacles, navigating autonomously until it detected a simulated CBRN hazard and conducted a sweep of a field one square kilometer in size to map elements of interest. The information was gathered onboard the UAV and shared with the TAK operator and users in the network, including headquarters.

“Mobile military technologies, like sUAVs, can be force multipliers and force protectors at the same time,” Kim said. “Anytime you can deploy technology like an sUAV to detect suspected CBRN hazards remotely and operate independently without exposing a soldier unnecessarily to harm is an advance in warfighter systems, and that’s important to us at Draper.”

“Draper designed the autonomy framework and sensor-driven mapping algorithm to be an extensible, modular and resilient mobility platform that is vehicle and processing system agnostic,” said Julius Rose, associate director for Sensors and Delivery at Draper. “As new capabilities and vehicles are developed, autonomous systems should be readily adaptable to support numerous mission types across domains, be that air, ground or sea. Development needs to be efficient, reusable and agile to keep up with the pace of the needs of soldiers and personnel in the field.”

Find military UAV manufacturers & suppliers>>

Posted by DA Staff Connect & Contact

Latest Articles

WDS Unveils Innovative Features and Expansion

At IDEX 2025, World Defense Show has revealed several new features to be implemented at its upcoming third edition in 2026 under the theme ‘The Future of Defense Integration’

Feb 18, 2025
New Coast Control Radar Launching at IDEX

Saab is introducing its new Coast Control Radar at IDEX 2025, a phased-array, software-defined system designed to enhance maritime security and monitor coastal waterways

Feb 18, 2025
Thermal Monocular Solutions to Showcase at Enforce Tac 2025

Teledyne FLIR will showcase its solutions ‘designed for the heat of the action’ at Enforce Tac 2025, including thermal monocular solutions for law enforcement agencies and more

Feb 18, 2025
Creomagic Showcasing High-Performance Wireless Solutions for Tactical UAVs

At IDEX 2025 and the EnforceTac trade fair, Creomagic will showcase its next-gen of compact wireless solutions, including the CreoAir Pro, designed to meet the demanding communication needs of aerial operations

Feb 18, 2025
Advanced C2 Software for Autonomous Swarm Operations Released

L3Harris introduces AMORPHOUS™, a new software that enables seamless control of thousands of autonomous assets across domains, enhancing military operations with advanced, collaborative autonomy.

Feb 17, 2025
Trillium to Provide Gimbal Systems for Raytheon Loitering Munition

Trillium Engineering has been awarded a Phase One Production contract to supply HD25-LV gimbal systems, set to integrate with a Raytheon Loitering Munition

Feb 17, 2025

Featured Content

Trillium to Provide Gimbal Systems for Raytheon Loitering Munition

Trillium Engineering has been awarded a Phase One Production contract to supply HD25-LV gimbal systems, set to integrate with a Raytheon Loitering Munition

Feb 17, 2025
Rugged Computing Solutions for Defense Applications

Defense Advancement showcases Systel's rugged mission-critical computing solutions for defense and government applications

Feb 13, 2025
IDEX 2025: Allen-Vanguard to Introduce New RF CEMA Technology

Allen-Vanguard is unveiling its latest core at IDEX 2025, delivering a new level of capability for multi-function CEMA platforms with improved electronic warfare performance

Feb 13, 2025