Autonomous Drone Delivery Device Receives UK IPO Patent 

The BMT SPARROW was developed for defense applications where drones are being trialed to resupply troops and deliver items such as sterilized medical equipment to dispersed, unpredictable, and hostile locations By DA Staff / 17 Mar 2023

Cargo Drones

Discover cutting-edge solutions from 4 leading global suppliers
SUPPLIER SPOTLIGHT
BMT Sparrow
Follow DA

The UK Intellectual Property Office (IPO) has granted BMT a patent for its novel SPARROW concept, an autonomous ‘air-ground payload transfer device’ for drone delivery applications.

This patent follows participation in the UK Ministry of Defence flagship innovation event, the Army Warfighting Experiment (AWE), where BMT showcased a successful world-first demonstration of SPARROW.

The AWE 23 independent Product Assessment Report cited the following: “As the system is developed further, it will provide a capability unlike anything else known to Defense. It would enable the use of UAS to deliver payloads in the most challenging terrain, reducing risk to both the airframe, the payload and personnel on the ground.”

With SPARROW, BMT believes it has addressed the inherent problem of large, noisy, and potentially hazardous delivery drones having to land or hover low over the payload destination, potentially close to people in unpredictable, sensitive and cluttered military environments.

“BMT’s patent signals a new type of suspended robotic device: a device that takes over responsibility for the final moments of payload delivery, and better suited to challenging and sensitive environments. This small, highly-ruggedized robotic device could even autonomously collect packages as well as deliver them without the need for infrastructure on the ground,” said Phil Metcalfe, Regional Business Director for UK and Europe. “With the development of this autonomous and highly-versatile concept the project team have delivered a great example of how BMT actively applies its innovation to solve its customers’ complex problems. Further, we were super excited to participate in the British Army’s AWE 23, with our rugged technology demonstrating the potential to feed into the army’s plans for a future digital backbone.”

SPARROW infographic v3


According to BMT, SPARROW is fundamentally different to winch systems commonly used in current trials for delivery drones. On a winch, the payload swinging at the bottom end of a line is raised or lowered by the cable drum attached to the underside of the fuselage, and moved horizontally by subtle movements of the drone above. This provides poor control of the payload, especially in windy conditions and limits the maximum height of the drone. 

In comparison, SPARROW is located at the bottom end of the line with the payload with its own power, sensors and actuators; it has autonomous control of its descent using an internal drum, while making precise and immediate horizontal adjustments to counter wind effects using four small, quiet pusher fans. SPARROW takes responsibility of the delivery allowing the larger delivery drone to remain much, much higher at the destination, relatively unheard and unobtrusive at ground level.

Being much smaller than the drone and without the need for powerful, lift-generating rotors, SPARROW enables safe, precise and quiet delivery in challenging or sensitive environments.

“During 30 years of working in aerospace, I have not seen anything like the surge in new aircraft, systems, and applications that has happened in the last five years,” said BMT’s development partner, Dr Steve Wright from Wright Airborne Computing. “SPARROW is a perfect example of this revolution, fuelled by a happy convergence of 21st century technologies harnessed together by computers and software that engineers like me could only dream about 30 years ago.”

The BMT SPARROW concept was initially developed for defense applications where drones are being trialed to resupply troops and deliver items such as sterilized medical equipment to dispersed, unpredictable, and potentially hostile locations. 

The autonomous BMT SPARROW lowers both itself and the payload at the bottom end of a long, low-profile, weight-bearing line, with the top end of the line attached to the drone above. To provide autonomy of movement, BMT SPARROW has an internally powered cable drum to silently control height, four small side-facing pusher fans for horizontal adjustments, and all the necessary sensors, power, and processing.

The BMT SPARROW concept enables the large, noisy, vulnerable drone to remain much higher above the complex ground environment at the destination. Safe controlled delivery is possible using this approach from 200ft in windy conditions, and 500-1000ft in light winds, with additional options for higher drops. In comparison to using a traditional winch from a low hover, a BMT SPARROW delivery offers a much smaller, quieter physical presence and a safer, more precise delivery to a wider variety of locations, including confined spaces close to vertical surfaces and urban infrastructure.

Alongside applications in defense, the approach may also offer value to manned helicopter operations and across other sectors such as Maritime Ship-Shore deliveries, support to maintenance engineers on tall structures, Emergency Services, and e-commerce deliveries to domestic addresses. The project is looking to partner for further Research and Development and licence the technology to a range of leading established operators.

Find manufacturers and suppliers of long-range and heavy-lift cargo drones, UAVs and UAS for defense applications>>

Posted by DA Staff Connect & Contact

Latest Articles

New 3D Radar System Launched with AI-Powered Drone Detection

Terma has introduced SCANTER Sphera, a compact 3D radar system with AI-driven drone detection and full 360° situational awareness

May 23, 2025
Triad RF Systems Certified to Global Quality Standard ISO 9001:2015

Triad RF Systems has achieved ISO 9001:2015 certification, reinforcing its commitment to quality, continuous improvement, and delivering reliable RF solutions worldwide

May 23, 2025
LiDAR’s Evolving Role in Security & Surveillance

Inertial Labs outlines how LiDAR, including UAV-mounted systems like RESEPI GEN-II, enhances perimeter security through precise mapping, environmental awareness, and real-time monitoring

May 23, 2025
Gyro Stabilization Solutions for Tactical Military Systems

Defense Advancement showcases high-precision gyro stabilization mounts for mission-critical military and defense applications

May 23, 2025
AI-Powered Mission Planning & Target Recognition Software Selected for Long-Range Loitering Munitions

Teledyne FLIR OEM's Prism Supervisor and Prism SKR software is being integrated into Dragoon Technology's UAS under the DIU's Project Artemis

May 22, 2025
GA-ASI Begins Ground Testing of Uncrewed Collaborative Combat Aircraft

GA-ASI has begun ground testing of its YFQ-42A uncrewed jet for the U.S. Air Force’s CCA program, targeting a summer 2025 first flight as part of next-generation combat aviation efforts

May 22, 2025

Featured Content

New Hybrid Solution for Long-Term GNSS-Denied Navigation

Advanced Navigation has demonstrated a major breakthrough with a Hybrid Navigation System designed for GPS-denied environments, combining a strategic-grade FOG INS with a laser velocity sensor

May 21, 2025
New Line of Kinetic-Capable Unmanned Surface Vessels Introduced

Red Cat Holdings enters the maritime autonomy market with a new line of combat-proven USVs, expanding its multi-domain unmanned systems for naval operations

May 20, 2025
Next-Gen Group 2 UAS Enters Production with Extended Endurance & Upgrades

Aurora Flight Sciences upgrades the SKIRON-X Group 2 UAS with greater versatility and tactical mission endurance, as well as announcing the hydrogen-powered SKIRON-XLE variant

May 13, 2025
Advancing Defense Capability Through Strategic Collaboration Defense Advancement works with major OEMs to foster collaboration and increase engagement with SMEs, to accelerate innovation and drive defense capabilities forward.