New Robotic Process to Clean Fiber Optic Cables

The U.S. Navy’s Fleet Readiness Center East Advanced Technology and Innovation Team have been evaluating a robotic fiber optic inspection and cleaning system that has been used in an aircraft manufacturing environment By DA Staff / 21 Jul 2021

Fiber Optic Connectors

Discover cutting-edge solutions from leading global suppliers
SUPPLIER SPOTLIGHT
Follow DA

Aviation maintenance professionals at the U.S. Navy’s Fleet Readiness Center East (FRCE) based at Marine Corps Air Station Cherry Point in North Carolina are trying out an advanced method of cleaning the connectors at the ends of fiber optic cables used in aircraft avionics. 

The center’s Advanced Technology and Innovation Team (ATI) have been evaluating a robotic fiber optic inspection and cleaning system that has been used in an aircraft manufacturing environment.

Advanced military aircraft rely on fiber optics to transmit massive amounts of data to avionics and flight control systems in real time. The connectors at the ends of these critical cables and the ends of the fiber strands inside the connectors can get dirty with use in harsh environments, which can degrade their efficiency. 

Currently, FRCE use a manual process to clean grease, oil, dirt, and other contaminants that degrade the cable efficiency to ensure that light passes uninterrupted through the fiber strands inside of these cables.

According to Chase Templeton, Robotics, Support Equipment, and Wiring Technology Lead for FRCE’s ATI Team, this process involves running a piece of floss across the end of each fiber strand one at a time to clean them:

“Right now, we’re using a manual process in which you have to align the cleaning tool perpendicular to the face of the fiber optic cable connector, and the positioning of the tool dictates how clean you actually get the fiber strand.

“It’s time consuming and may take as many as three to five cleanings before each fiber strand is completely clean.”

The advantage of a robotic system is that it takes the guesswork out of aligning the cleaning tool with the fiber optic cable.

“With the robotic system, it perfectly aligns the cleaning floss to the fiber strand end every time. It usually only requires a single cleaning to meet specifications for cleaning those fiber optics.”

Representatives from FiberQA demonstrated their robotic fiber optic cleaning and inspection system on FRCE’s F-35 Lightning II maintenance trainer airframe to an audience of around 20 FRCE participants. Doug Wilson, founder of FiberQA, called the robotic system a first line of defense against contamination of the fiber optic cables.

“There are two parts to it. One, make it clean enough so it actually transmits the light to maximize the efficiency of the network. The second is to prevent damage due to that contamination. Our equipment verifies that it’s safe to connect.”

FRCE engineers who attended the demonstration said removing the human factor from fiber optics cleaning would be beneficial to the rework process.

“It’s a highly subjective task and requires a lot of training to be able to inspect and clean our fiber optics effectively,” said Matthew Crisp, F-35 Joint Program Office site lead at FRCE. 

“We want to see what opportunities we have to remove the subjectivity and increase the speed of doing those inspections.”

The robotic cleaning and inspection system from FiberQA is used currently in aircraft manufacturing environments, but the company is looking to expand into aircraft maintenance. 

The next step for the ATI Team is to determine what changes might be necessary for the technology to be useful in the maintenance operations for the F-35 platform or any other platform that utilizes fiber optic systems.

“We don’t want equipment that can be easily damaged, and we don’t want a lot of weight hanging off the aircraft connectors. Any extra weight that is hung on these wiring harnesses is not a good thing,” Templeton said. 

“We need to find a way to support this new tool, and we need to make sure it’s ruggedized enough to be used in a depot environment.”

Posted by DA Staff Connect & Contact

Latest Articles

The Importance of VPX Development Chassis for Defense Platforms

LCR explains how VPX development chassis support high-power payloads with advanced cooling options, while accelerating application development for critical embedded systems

Jun 13, 2025
Troposcatter Communication System Debuts in Asia Pacific at Indo Defence

Spectra Group introduces its mobile, satellite-independent Troposcatter on the Move system at Indo Defence 2025, enhancing resilient communications across maritime and littoral environments

Jun 13, 2025
UK MOD & GA-ASI Finalize Sustainment Contract for MQ-9B-Based Protector RG Mk1

The UK MOD and GA-ASI have signed a contract to support and sustain the RAF’s Protector RG Mk1, based on the MQ-9B

Jun 12, 2025
Neousys Brings Rugged Edge AI to IDET 2025 with Elvac

Neousys Technology displayed its rugged edge AI computers at IDET 2025, partnering with Elvac to showcase advanced solutions for armored vehicles, security drones, and UGVs

Jun 12, 2025
Advanced Unmanned Helicopter Systems for Critical Defense & Government Missions

Defense Advancement is showcasing Sabrobotix advanced unmanned helicopter platforms for mission-critical defense and government applications

Jun 12, 2025
Trillium Launches Advanced Gimbal for Medium & Long Range Reconnaissance

Trillium Engineering’s new HD45 LV R delivers advanced imaging performance in an ultra-light gimbal, optimized for long range and medium range ISR missions

Jun 11, 2025

Featured Content

Trillium Launches Advanced Gimbal for Medium & Long Range Reconnaissance

Trillium Engineering’s new HD45 LV R delivers advanced imaging performance in an ultra-light gimbal, optimized for long range and medium range ISR missions

Jun 11, 2025
Honeywell Unveils New Lightweight Tactical-Grade IMU

Honeywell has launched the HG3900 IMU, a compact tactical-grade unit with reduced size and power consumption while maintaining near-navigation-grade performance levels

Jun 10, 2025
Teledyne Marine Showcases Integrated Maritime Security Capabilities at SeaSEC Challenge 2025

Teledyne Marine joined SeaSEC Challenge 2025 to demonstrate integrated sonar, acoustic, and AUV technologies in live maritime threat scenarios, supporting international efforts to protect critical underwater infrastructure

Jun 05, 2025
Advancing Defense Capability Through Strategic Collaboration Defense Advancement works with major OEMs to foster collaboration and increase engagement with SMEs, to accelerate innovation and drive defense capabilities forward.