MQ-25 Completes First Carrier Tests with US Navy

Using a new remote-controlled system, the Boeing-owned MQ-25 T1 unmanned aerial refueling test asset easily and efficiently moved about the aircraft carrier deck By DA Staff / 23 Dec 2021

Discover Leading Defense Technology Solutions

Discover cutting-edge solutions from leading global suppliers
SUPPLIER SPOTLIGHT
Boeing-MQ-25
Follow DA

The U.S. Navy and Boeing have successfully maneuvered the Boeing-owned MQ-25 T1 test asset on a U.S. Navy aircraft carrier for the first time – an early step forward in ensuring the unmanned aerial refueler will seamlessly integrate into carrier operations.

During an underway demonstration aboard the USS George H.W. Bush (CVN 77), Navy flight deck directors – known as ‘yellow shirts’ – used standard hand signals to direct T1 just like any other carrier-based aircraft. Instead of a pilot receiving the commands, however, it was a Boeing MQ-25 Deck Handling Operator (DHO), who stood right beside the ‘yellow shirt’ and commanded the aircraft using a new handheld deck control device.

“This is another significant step forward in demonstrating MQ-25’s integration into the Carrier Air Wing on the flight deck of our Fleet’s aircraft carriers,” said Capt. Chad Reed, Unmanned Carrier Aviation program manager. “The success of this event is a testament to the hard work of our engineers, testers, operators and the close collaboration and teaming from Naval Air Force Atlantic and the crew aboard CVN 77.” 

The demonstration was intended to ensure that the design of the MQ-25 will successfully integrate into the carrier environment and to evaluate the functionality, capability and handling qualities of the deck handling system both in day and night conditions. Maneuvers included taxiing on the deck, connecting to the catapult, clearing the landing area and parking on the deck.  

“The Navy has a rigorous, well-established process for moving aircraft on the carrier. Our goal was to ensure the MQ-25 fits into the process without changing it,” said Jim Young, MQ-25 chief engineer. “From the design of the aircraft to the design of the system moving it, our team has worked hard to make the MQ-25 carrier suitable in every way.”

DHOs trained in Boeing’s deck handling simulation lab in St. Louis, where they practiced entering commands from simulated ‘yellow shirts’ into the real handheld device. A simulated MQ-25, running the aircraft’s real operational flight code and interfaces, would move accordingly. The handheld controller is a simple, easy-to-use device designed specifically for a generation of sailors who natively understand such handheld technology.

The deck handling demonstration followed a two-year flight test campaign for the Boeing-owned T1 test asset, during which the Boeing and Navy team refueled three different carrier-based aircraft – an F/A-18 Super Hornet, an E-2D Hawkeye and an F-35C Lightning II.

“The Navy gave us two key performance parameters for the program – aerial refueling and integration onto the carrier deck,” said Dave Bujold, Boeing MQ-25 program director. “We’ve shown that the MQ-25 can meet both requirements, and we’ve done it years earlier than traditional acquisition programs.”

Posted by DA Staff Connect & Contact

Latest Articles

Quadratix: Unified Software Ecosystem from General Atomics

Quadratix, a General Atomics vertically integrated software enterprise, aims to deliver agile, interoperable solutions that bridge air, land, sea, cyber, and space operations

Apr 17, 2025
Ophir® FoldIR Lens Enhances Long-Range Imaging for Defense & Security Operations

The new Ophir® FoldIR 25-275mm MWIR zoom lens delivers compact, long-range imaging with low-SWaP performance for drones and small gimbal platforms

Apr 17, 2025
Rugged Power Conversion Devices for Military & Defense Applications

Defense Advancement showcases RIPEnergy's field-proven power conversion products for military and defense applications

Apr 17, 2025
Forcys: Advancing Seabed Warfare with Integrated Payloads, Detection Tools & Secure Communications

Forcys outlines strategies for countering underwater threats, combining sensor payloads, communications tools, and autonomous systems with defense and commercial applications

Apr 17, 2025
Advancing EMP/HEMP Filter Technology for Modern EMI Threats

Spectrum Control highlights key advancements in EMP/HEMP filters designed to protect critical systems from EMI and electronic warfare in its white papers

Apr 16, 2025
24th Annual Future Artillery Conference Registration Details

The Indirect Fires community gathers for the 24th Defence iQ Future Artillery Conference backed by NATO and the British Army

Apr 16, 2025

Featured Content

Textron Systems to Support Software & Payload Development for Navy’s MCM USV

Textron Systems is set to support the software development and payload integration for the Navy’s Mine Countermeasures (MCM) Unmanned Surface Vehicle (USV), focusing on future mission capabilities and advanced system integration

Apr 14, 2025
Triad RF Systems Supplies Bi-Directional Amplifiers to Boost Naval Communications

Taiwan has received dual-channel bi-directional amplifiers (BDAs) from Triad RF Systems, strengthening real-time data transmission and ISR functionality in unmanned naval platforms

Apr 11, 2025
How the MQ-9B SeaGuardian® Enhances Naval Surveillance & Warfare

GA-ASI explains how the MQ-9B SeaGuardian® supports naval operations with long-endurance surveillance, anti-submarine warfare, and real-time intelligence for enhanced maritime security

Apr 08, 2025
Advancing Defense Capability Through Strategic Collaboration Defense Advancement works with major OEMs to foster collaboration and increase engagement with SMEs, to accelerate innovation and drive defense capabilities forward.